参数管理¶
在选择了架构并设置了超参数后,我们就进入了训练阶段。 此时,我们的目标是找到使损失函数最小化的模型参数值。 经过训练后,我们将需要使用这些参数来做出未来的预测。 此外,有时我们希望提取参数,以便在其他环境中复用它们, 将模型保存下来,以便它可以在其他软件中执行, 或者为了获得科学的理解而进行检查。
之前的介绍中,我们只依靠深度学习框架来完成训练的工作, 而忽略了操作参数的具体细节。 本节,我们将介绍以下内容:
- 访问参数,用于调试、诊断和可视化;
- 参数初始化;
- 在不同模型组件间共享参数。
(我们首先看一下具有单隐藏层的多层感知机。)
import torch
from torch import nn
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)
tensor([\[-0.0970], [-0.0827]\], grad_fn=<AddmmBackward0>)
[参数访问]¶
我们从已有模型中访问参数。
当通过Sequential
类定义模型时,
我们可以通过索引来访问模型的任意层。
这就像模型是一个列表一样,每层的参数都在其属性中。
如下所示,我们可以检查第二个全连接层的参数。
print(net[2].state_dict())
OrderedDict([('weight', tensor([\[-0.0427, -0.2939, -0.1894, 0.0220, -0.1709, -0.1522, -0.0334, -0.2263]\]\)\), ('bias', tensor([0.0887]\)\)\])
输出的结果告诉我们一些重要的事情: 首先,这个全连接层包含两个参数,分别是该层的权重和偏置。 两者都存储为单精度浮点数(float32)。 注意,参数名称允许唯一标识每个参数,即使在包含数百个层的网络中也是如此。
[目标参数]¶
注意,每个参数都表示为参数类的一个实例。 要对参数执行任何操作,首先我们需要访问底层的数值。 有几种方法可以做到这一点。有些比较简单,而另一些则比较通用。 下面的代码从第二个全连接层(即第三个神经网络层)提取偏置, 提取后返回的是一个参数类实例,并进一步访问该参数的值。
print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)
<class 'torch.nn.parameter.Parameter'> Parameter containing: tensor([0.0887], requires_grad=True) tensor([0.0887])
参数是复合的对象,包含值、梯度和额外信息。 这就是我们需要显式参数值的原因。 除了值之外,我们还可以访问每个参数的梯度。 在上面这个网络中,由于我们还没有调用反向传播,所以参数的梯度处于初始状态。
net[2].weight.grad == None
True
[一次性访问所有参数]¶
当我们需要对所有参数执行操作时,逐个访问它们可能会很麻烦。 当我们处理更复杂的块(例如,嵌套块)时,情况可能会变得特别复杂, 因为我们需要递归整个树来提取每个子块的参数。 下面,我们将通过演示来比较访问第一个全连接层的参数和访问所有层。
print(*[(name, param.shape) for name, param in net[0].named_parameters()])
print(*[(name, param.shape) for name, param in net.named_parameters()])
('weight', torch.Size([8, 4])) ('bias', torch.Size([8])) ('0.weight', torch.Size([8, 4])) ('0.bias', torch.Size([8])) ('2.weight', torch.Size([1, 8])) ('2.bias', torch.Size([1]))
这为我们提供了另一种访问网络参数的方式,如下所示。
net.state_dict()['2.bias'].data
tensor([0.0887])
[从嵌套块收集参数]¶
让我们看看,如果我们将多个块相互嵌套,参数命名约定是如何工作的。 我们首先定义一个生成块的函数(可以说是“块工厂”),然后将这些块组合到更大的块中。
def block1():
return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
nn.Linear(8, 4), nn.ReLU())
def block2():
net = nn.Sequential()
for i in range(4):
# 在这里嵌套
net.add_module(f'block {i}', block1())
return net
rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)
tensor([\[0.2596], [0.2596]\], grad_fn=<AddmmBackward0>)
[设计了网络后,我们看看它是如何工作的。]
print(rgnet)
Sequential( (0): Sequential( (block 0): Sequential( (0): Linear(in_features=4, out_features=8, bias=True) (1): ReLU() (2): Linear(in_features=8, out_features=4, bias=True) (3): ReLU() ) (block 1): Sequential( (0): Linear(in_features=4, out_features=8, bias=True) (1): ReLU() (2): Linear(in_features=8, out_features=4, bias=True) (3): ReLU() ) (block 2): Sequential( (0): Linear(in_features=4, out_features=8, bias=True) (1): ReLU() (2): Linear(in_features=8, out_features=4, bias=True) (3): ReLU() ) (block 3): Sequential( (0): Linear(in_features=4, out_features=8, bias=True) (1): ReLU() (2): Linear(in_features=8, out_features=4, bias=True) (3): ReLU() ) ) (1): Linear(in_features=4, out_features=1, bias=True) )
因为层是分层嵌套的,所以我们也可以像通过嵌套列表索引一样访问它们。 下面,我们访问第一个主要的块中、第二个子块的第一层的偏置项。
rgnet[0][1][0].bias.data
tensor([ 0.1999, -0.4073, -0.1200, -0.2033, -0.1573, 0.3546, -0.2141, -0.2483])
参数初始化¶
知道了如何访问参数后,现在我们看看如何正确地初始化参数。
我们在 :numref:sec_numerical_stability
中讨论了良好初始化的必要性。
深度学习框架提供默认随机初始化,
也允许我们创建自定义初始化方法,
满足我们通过其他规则实现初始化权重。
默认情况下,PyTorch会根据一个范围均匀地初始化权重和偏置矩阵,
这个范围是根据输入和输出维度计算出的。
PyTorch的nn.init
模块提供了多种预置初始化方法。
[内置初始化]¶
让我们首先调用内置的初始化器。 下面的代码将所有权重参数初始化为标准差为0.01的高斯随机变量, 且将偏置参数设置为0。
def init_normal(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, mean=0, std=0.01)
nn.init.zeros_(m.bias)
net.apply(init_normal)
net[0].weight.data[0], net[0].bias.data[0]
(tensor([-0.0214, -0.0015, -0.0100, -0.0058]), tensor(0.))
我们还可以将所有参数初始化为给定的常数,比如初始化为1。
def init_constant(m):
if type(m) == nn.Linear:
nn.init.constant_(m.weight, 1)
nn.init.zeros_(m.bias)
net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]
(tensor([1., 1., 1., 1.]), tensor(0.))
我们还可以[对某些块应用不同的初始化方法]。 例如,下面我们使用Xavier初始化方法初始化第一个神经网络层, 然后将第三个神经网络层初始化为常量值42。
def init_xavier(m):
if type(m) == nn.Linear:
nn.init.xavier_uniform_(m.weight)
def init_42(m):
if type(m) == nn.Linear:
nn.init.constant_(m.weight, 42)
net[0].apply(init_xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)
tensor([ 0.5236, 0.0516, -0.3236, 0.3794]) tensor([\[42., 42., 42., 42., 42., 42., 42., 42.]\])
[自定义初始化]¶
有时,深度学习框架没有提供我们需要的初始化方法。 在下面的例子中,我们使用以下的分布为任意权重参数$w$定义初始化方法:
$$ \begin{aligned} w \sim \begin{cases} U(5, 10) & \text{ 可能性 } \frac{1}{4} \\ 0 & \text{ 可能性 } \frac{1}{2} \\ U(-10, -5) & \text{ 可能性 } \frac{1}{4} \end{cases} \end{aligned} $$同样,我们实现了一个my_init
函数来应用到net
。
def my_init(m):
if type(m) == nn.Linear:
print("Init", *[(name, param.shape)
for name, param in m.named_parameters()][0])
nn.init.uniform_(m.weight, -10, 10)
m.weight.data *= m.weight.data.abs() >= 5
net.apply(my_init)
net[0].weight[:2]
Init weight torch.Size([8, 4]) Init weight torch.Size([1, 8])
tensor([\[5.4079, 9.3334, 5.0616, 8.3095], [0.0000, 7.2788, -0.0000, -0.0000]\], grad_fn=<SliceBackward0>)
注意,我们始终可以直接设置参数。
net[0].weight.data[:] += 1
net[0].weight.data[0, 0] = 42
net[0].weight.data[0]
tensor([42.0000, 10.3334, 6.0616, 9.3095])
[参数绑定]¶
有时我们希望在多个层间共享参数: 我们可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。
# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
shared, nn.ReLU(),
shared, nn.ReLU(),
nn.Linear(8, 1))
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])
tensor([True, True, True, True, True, True, True, True]) tensor([True, True, True, True, True, True, True, True])
这个例子表明第三个和第五个神经网络层的参数是绑定的。 它们不仅值相等,而且由相同的张量表示。 因此,如果我们改变其中一个参数,另一个参数也会改变。 这里有一个问题:当参数绑定时,梯度会发生什么情况? 答案是由于模型参数包含梯度,因此在反向传播期间第二个隐藏层 (即第三个神经网络层)和第三个隐藏层(即第五个神经网络层)的梯度会加在一起。