用于预训练词嵌入的数据集¶
:label:sec_word2vec_data
现在我们已经了解了word2vec模型的技术细节和大致的训练方法,让我们来看看它们的实现。具体地说,我们将以 :numref:sec_word2vec
的跳元模型和
:numref:sec_approx_train
的负采样为例。本节从用于预训练词嵌入模型的数据集开始:数据的原始格式将被转换为可以在训练期间迭代的小批量。
import math
import os
import random
import torch
from d2l import torch as d2l
读取数据集¶
我们在这里使用的数据集是Penn Tree Bank(PTB)。该语料库取自“华尔街日报”的文章,分为训练集、验证集和测试集。在原始格式中,文本文件的每一行表示由空格分隔的一句话。在这里,我们将每个单词视为一个词元。
#@save
d2l.DATA_HUB['ptb'] = (d2l.DATA_URL + 'ptb.zip',
'319d85e578af0cdc590547f26231e4e31cdf1e42')
#@save
def read_ptb():
"""将PTB数据集加载到文本行的列表中"""
data_dir = d2l.download_extract('ptb')
# Readthetrainingset.
with open(os.path.join(data_dir, 'ptb.train.txt')) as f:
raw_text = f.read()
return [line.split() for line in raw_text.split('\n')]
sentences = read_ptb()
f'# sentences数: {len(sentences)}'
Downloading ../data/ptb.zip from http://d2l-data.s3-accelerate.amazonaws.com/ptb.zip...
'# sentences数: 42069'
在读取训练集之后,我们为语料库构建了一个词表,其中出现次数少于10次的任何单词都将由“<unk>”词元替换。请注意,原始数据集还包含表示稀有(未知)单词的“<unk>”词元。
vocab = d2l.Vocab(sentences, min_freq=10)
f'vocab size: {len(vocab)}'
'vocab size: 6719'
下采样¶
文本数据通常有“the”“a”和“in”等高频词:它们在非常大的语料库中甚至可能出现数十亿次。然而,这些词经常在上下文窗口中与许多不同的词共同出现,提供的有用信息很少。例如,考虑上下文窗口中的词“chip”:直观地说,它与低频单词“intel”的共现比与高频单词“a”的共现在训练中更有用。此外,大量(高频)单词的训练速度很慢。因此,当训练词嵌入模型时,可以对高频单词进行下采样
:cite:Mikolov.Sutskever.Chen.ea.2013
。具体地说,数据集中的每个词$w_i$将有概率地被丢弃
其中$f(w_i)$是$w_i$的词数与数据集中的总词数的比率,常量$t$是超参数(在实验中为$10^{-4}$)。我们可以看到,只有当相对比率$f(w_i) > t$时,(高频)词$w_i$才能被丢弃,且该词的相对比率越高,被丢弃的概率就越大。
#@save
def subsample(sentences, vocab):
"""下采样高频词"""
# 排除未知词元'<unk>'
sentences = [\[token for token in line if vocab[token] != vocab.unk]
for line in sentences]
counter = d2l.count_corpus(sentences)
num_tokens = sum(counter.values())
# 如果在下采样期间保留词元,则返回True
def keep(token):
return(random.uniform(0, 1) <
math.sqrt(1e-4 / counter[token] * num_tokens))
return ([\[token for token in line if keep(token)] for line in sentences],
counter)
subsampled, counter = subsample(sentences, vocab)
下面的代码片段绘制了下采样前后每句话的词元数量的直方图。正如预期的那样,下采样通过删除高频词来显著缩短句子,这将使训练加速。
d2l.show_list_len_pair_hist(
['origin', 'subsampled'], '# tokens per sentence',
'count', sentences, subsampled);
对于单个词元,高频词“the”的采样率不到1/20。
def compare_counts(token):
return (f'"{token}"的数量:'
f'之前={sum([l.count(token) for l in sentences])}, '
f'之后={sum([l.count(token) for l in subsampled])}')
compare_counts('the')
'"the"的数量:之前=50770, 之后=2056'
相比之下,低频词“join”则被完全保留。
compare_counts('join')
'"join"的数量:之前=45, 之后=45'
在下采样之后,我们将词元映射到它们在语料库中的索引。
corpus = [vocab[line] for line in subsampled]
corpus[:3]
[\[], [2115, 274, 406], [140, 3, 5277, 3054, 1580]\]
中心词和上下文词的提取¶
下面的get_centers_and_contexts
函数从corpus
中提取所有中心词及其上下文词。它随机采样1到max_window_size
之间的整数作为上下文窗口。对于任一中心词,与其距离不超过采样上下文窗口大小的词为其上下文词。
#@save
def get_centers_and_contexts(corpus, max_window_size):
"""返回跳元模型中的中心词和上下文词"""
centers, contexts = [], []
for line in corpus:
# 要形成“中心词-上下文词”对,每个句子至少需要有2个词
if len(line) < 2:
continue
centers += line
for i in range(len(line)): # 上下文窗口中间i
window_size = random.randint(1, max_window_size)
indices = list(range(max(0, i - window_size),
min(len(line), i + 1 + window_size)))
# 从上下文词中排除中心词
indices.remove(i)
contexts.append([line[idx] for idx in indices])
return centers, contexts
接下来,我们创建一个人工数据集,分别包含7个和3个单词的两个句子。设置最大上下文窗口大小为2,并打印所有中心词及其上下文词。
tiny_dataset = [list(range(7)), list(range(7, 10))]
print('数据集', tiny_dataset)
for center, context in zip(*get_centers_and_contexts(tiny_dataset, 2)):
print('中心词', center, '的上下文词是', context)
数据集 [\[0, 1, 2, 3, 4, 5, 6], [7, 8, 9]\] 中心词 0 的上下文词是 [1] 中心词 1 的上下文词是 [0, 2] 中心词 2 的上下文词是 [0, 1, 3, 4] 中心词 3 的上下文词是 [2, 4] 中心词 4 的上下文词是 [3, 5] 中心词 5 的上下文词是 [4, 6] 中心词 6 的上下文词是 [5] 中心词 7 的上下文词是 [8, 9] 中心词 8 的上下文词是 [7, 9] 中心词 9 的上下文词是 [7, 8]
在PTB数据集上进行训练时,我们将最大上下文窗口大小设置为5。下面提取数据集中的所有中心词及其上下文词。
all_centers, all_contexts = get_centers_and_contexts(corpus, 5)
f'# “中心词-上下文词对”的数量: {sum([len(contexts) for contexts in all_contexts])}'
'# “中心词-上下文词对”的数量: 1499984'
负采样¶
我们使用负采样进行近似训练。为了根据预定义的分布对噪声词进行采样,我们定义以下RandomGenerator
类,其中(可能未规范化的)采样分布通过变量sampling_weights
传递。
#@save
class RandomGenerator:
"""根据n个采样权重在{1,...,n}中随机抽取"""
def __init__(self, sampling_weights):
# Exclude
self.population = list(range(1, len(sampling_weights) + 1))
self.sampling_weights = sampling_weights
self.candidates = []
self.i = 0
def draw(self):
if self.i == len(self.candidates):
# 缓存k个随机采样结果
self.candidates = random.choices(
self.population, self.sampling_weights, k=10000)
self.i = 0
self.i += 1
return self.candidates[self.i - 1]
例如,我们可以在索引1、2和3中绘制10个随机变量$X$,采样概率为$P(X=1)=2/9, P(X=2)=3/9$和$P(X=3)=4/9$,如下所示。
#@save
generator = RandomGenerator([2, 3, 4])
[generator.draw() for _ in range(10)]
[1, 2, 2, 3, 3, 3, 3, 2, 1, 2]
对于一对中心词和上下文词,我们随机抽取了K
个(实验中为5个)噪声词。根据word2vec论文中的建议,将噪声词$w$的采样概率$P(w)$设置为其在字典中的相对频率,其幂为0.75
:cite:Mikolov.Sutskever.Chen.ea.2013
。
#@save
def get_negatives(all_contexts, vocab, counter, K):
"""返回负采样中的噪声词"""
# 索引为1、2、...(索引0是词表中排除的未知标记)
sampling_weights = [counter[vocab.to_tokens(i)]**0.75
for i in range(1, len(vocab))]
all_negatives, generator = [], RandomGenerator(sampling_weights)
for contexts in all_contexts:
negatives = []
while len(negatives) < len(contexts) * K:
neg = generator.draw()
# 噪声词不能是上下文词
if neg not in contexts:
negatives.append(neg)
all_negatives.append(negatives)
return all_negatives
all_negatives = get_negatives(all_contexts, vocab, counter, 5)
小批量加载训练实例¶
:label:subsec_word2vec-minibatch-loading
在提取所有中心词及其上下文词和采样噪声词后,将它们转换成小批量的样本,在训练过程中可以迭代加载。
在小批量中,$i^\mathrm{th}$个样本包括中心词及其$n_i$个上下文词和$m_i$个噪声词。由于上下文窗口大小不同,$n_i+m_i$对于不同的$i$是不同的。因此,对于每个样本,我们在contexts_negatives
个变量中将其上下文词和噪声词连结起来,并填充零,直到连结长度达到$\max_i
n_i+m_i$(max_len
)。为了在计算损失时排除填充,我们定义了掩码变量masks
。在masks
中的元素和contexts_negatives
中的元素之间存在一一对应关系,其中masks
中的0(否则为1)对应于contexts_negatives
中的填充。
为了区分正反例,我们在contexts_negatives
中通过一个labels
变量将上下文词与噪声词分开。类似于masks
,在labels
中的元素和contexts_negatives
中的元素之间也存在一一对应关系,其中labels
中的1(否则为0)对应于contexts_negatives
中的上下文词的正例。
上述思想在下面的batchify
函数中实现。其输入data
是长度等于批量大小的列表,其中每个元素是由中心词center
、其上下文词context
和其噪声词negative
组成的样本。此函数返回一个可以在训练期间加载用于计算的小批量,例如包括掩码变量。
#@save
def batchify(data):
"""返回带有负采样的跳元模型的小批量样本"""
max_len = max(len(c) + len(n) for _, c, n in data)
centers, contexts_negatives, masks, labels = [], [], [], []
for center, context, negative in data:
cur_len = len(context) + len(negative)
centers += [center]
contexts_negatives += \
[context + negative + [0] * (max_len - cur_len)]
masks += [\[1] * cur_len + [0] * (max_len - cur_len)]
labels += [\[1] * len(context) + [0] * (max_len - len(context))]
return (torch.tensor(centers).reshape((-1, 1)), torch.tensor(
contexts_negatives), torch.tensor(masks), torch.tensor(labels))
让我们使用一个小批量的两个样本来测试此函数。
x_1 = (1, [2, 2], [3, 3, 3, 3])
x_2 = (1, [2, 2, 2], [3, 3])
batch = batchify((x_1, x_2))
names = ['centers', 'contexts_negatives', 'masks', 'labels']
for name, data in zip(names, batch):
print(name, '=', data)
centers = tensor([\[1], [1]\]) contexts_negatives = tensor([\[2, 2, 3, 3, 3, 3], [2, 2, 2, 3, 3, 0]\]) masks = tensor([\[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 0]\]) labels = tensor([\[1, 1, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0]\])
整合代码¶
最后,我们定义了读取PTB数据集并返回数据迭代器和词表的load_data_ptb
函数。
#@save
def load_data_ptb(batch_size, max_window_size, num_noise_words):
"""下载PTB数据集,然后将其加载到内存中"""
num_workers = d2l.get_dataloader_workers()
sentences = read_ptb()
vocab = d2l.Vocab(sentences, min_freq=10)
subsampled, counter = subsample(sentences, vocab)
corpus = [vocab[line] for line in subsampled]
all_centers, all_contexts = get_centers_and_contexts(
corpus, max_window_size)
all_negatives = get_negatives(
all_contexts, vocab, counter, num_noise_words)
class PTBDataset(torch.utils.data.Dataset):
def __init__(self, centers, contexts, negatives):
assert len(centers) == len(contexts) == len(negatives)
self.centers = centers
self.contexts = contexts
self.negatives = negatives
def __getitem__(self, index):
return (self.centers[index], self.contexts[index],
self.negatives[index])
def __len__(self):
return len(self.centers)
dataset = PTBDataset(all_centers, all_contexts, all_negatives)
data_iter = torch.utils.data.DataLoader(
dataset, batch_size, shuffle=True,
collate_fn=batchify, num_workers=num_workers)
return data_iter, vocab
让我们打印数据迭代器的第一个小批量。
data_iter, vocab = load_data_ptb(512, 5, 5)
for batch in data_iter:
for name, data in zip(names, batch):
print(name, 'shape:', data.shape)
break
centers shape: torch.Size([512, 1]) contexts_negatives shape: torch.Size([512, 60]) masks shape: torch.Size([512, 60]) labels shape: torch.Size([512, 60])