多层感知机

多层感知机 我们介绍了softmax回归,训练分类器从低分辨率图像中识别10类服装。 在这个过程中,我们学习了如何处理数据,如何将输出转换为有效的概率分布, 并应用适当的损失函数,根据模型参数最小化损失。 我们已经在简单的线性模型背景下掌握了这些知识, 现在我们可以开始对深度神经网络的探索,这也是本

Vincent Vincent 发布于 2024-04-07

softmax回归的简洁实现

softmax回归的简洁实现 在 3.3节中, 我们发现通过深度学习框架的高级API能够使实现 线性回归变得更加容易。 同样,通过深度学习框架的高级API也能更方便地实现softmax回归模型。 本节如在

Vincent Vincent 发布于 2024-04-07

softmax回归的从零开始实现

softmax回归的从零开始实现 就像我们从零开始实现线性回归一样, 我们认为softmax回归也是重要的基础,因此应该知道实现softmax回归的细节。 本节我们将使用刚刚在 3.5节中引入的Fashion-MNIST数据集, 并设置数据

Vincent Vincent 发布于 2024-04-07

图像分类数据集

图像分类数据集 MNIST数据集 (LeCun et al., 1998) 是图像分类中广泛使用的数据集之一,但作为基准数据集过于简单。 我们将使用类似但更复杂的Fashion-MNIST数据集 (

Vincent Vincent 发布于 2024-04-07

softmax回归

softmax回归 在 3.1节中我们介绍了线性回归。 随后,在

Vincent Vincent 发布于 2024-04-07

线性回归的简洁实现

线性回归的简洁实现 在过去的几年里,出于对深度学习强烈的兴趣, 许多公司、学者和业余爱好者开发了各种成熟的开源框架。 这些框架可以自动化基于梯度的学习算法中重复性的工作。 在 3.2节中,我们只运用了: (1)通过张量来进行数据存储和线性代数; (2)通过自动微分来计算梯度。 实际上,由于

Vincent Vincent 发布于 2024-04-07

线性回归的从零开始实现

线性回归的从零开始实现 在了解线性回归的关键思想之后,我们可以开始通过代码来动手实现线性回归了。 在这一节中,我们将从零开始实现整个方法, 包括数据流水线、模型、损失函数和小批量随机梯度下降优化器。 虽然现代的深度学习框架几乎可以自动化地进行所有这些工作,但从零开始实现可以确保我们真正知道自己在做什

Vincent Vincent 发布于 2024-04-07

线性回归

线性回归 回归(regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。 在自然科学和社会科学领域,回归经常用来表示输入和输出之间的关系。 在机器学习领域中的大多数任务通常都与预测(prediction)有关。 当我们想预测一个数值时,就会涉及到回归问题。 常见的例子包括:预测价

Vincent Vincent 发布于 2024-04-07

查阅文档

查阅文档 由于篇幅限制,本书不可能介绍每一个MXNet函数和类。 API文档、其他教程和示例提供了本书之外的大量文档。 本节提供了一些查看MXNet API的指导。 2.7.1. 查找模块中的所有函数和类 为了知道模块中可以调用哪些函数和类,可以调用dir函数。 例如,我们可以查询随机数生成模块中的

Vincent Vincent 发布于 2024-04-07

概率

概率 简单地说,机器学习就是做出预测。 根据病人的临床病史,我们可能想预测他们在下一年心脏病发作的概率。 在飞机喷气发动机的异常检测中,我们想要评估一组发动机读数为正常运行情况的概率有多大。 在强化学习中,我们希望智能体(agent)能在一个环境中智能地行动。 这意味着我们需要考虑在每种可行的行为下

Vincent Vincent 发布于 2024-04-07

自动微分

自动微分 正如 2.4节中所说,求导是几乎所有深度学习优化算法的关键步骤。 虽然求导的计算很简单,只需要一些基本的微积分。 但对于复杂的模型,手工进行更新是一件很痛苦的事情(而且经常容易出错)。 深度学习框架通过自动计算导数,即自动微分(automatic differentiation)来加快求导

Vincent Vincent 发布于 2024-04-07

微积分

微积分 在2500年前,古希腊人把一个多边形分成三角形,并把它们的面积相加,才找到计算多边形面积的方法。 为了求出曲线形状(比如圆)的面积,古希腊人在这样的形状上刻内接多边形。 如 图2.4.1所示,内接多边形的等长边越多,就越接近圆。 这个过程也被称为逼近法(method of exhaustio

Vincent Vincent 发布于 2024-04-07

线性代数

线性代数 在介绍完如何存储和操作数据后,接下来将简要地回顾一下部分基本线性代数内容。 这些内容有助于读者了解和实现本书中介绍的大多数模型。 本节将介绍线性代数中的基本数学对象、算术和运算,并用数学符号和相应的代码实现来表示它们。 2.3.1. 标量 如果你曾经在餐厅支付餐费,那么应该已经知道一些基本

Vincent Vincent 发布于 2024-04-07

数据预处理

数据预处理 为了能用深度学习来解决现实世界的问题,我们经常从预处理原始数据开始, 而不是从那些准备好的张量格式数据开始。 在Python中常用的数据分析工具中,我们通常使用pandas软件包。 像庞大的Python生态系统中的许多其他扩展包一样,pandas可以与张量兼容。 本节我们将简要介绍使用p

Vincent Vincent 发布于 2024-04-07

数据操作

数据操作 为了能够完成各种数据操作,我们需要某种方法来存储和操作数据。 通常,我们需要做两件重要的事:(1)获取数据;(2)将数据读入计算机后对其进行处理。 如果没有某种方法来存储数据,那么获取数据是没有意义的。 首先,我们介绍�维数组,也称为张量(tensor)。 使用过Python中NumPy计

Vincent Vincent 发布于 2024-04-07

知识概要

引言 时至今日,人们常用的计算机程序几乎都是软件开发人员从零编写的。 比如,现在开发人员要编写一个程序来管理网上商城。 经过思考,开发人员可能提出如下一个解决方案: 首先,用户通过Web浏览器(或移动应用程序)与应用程序进行交互; 紧接着,应用程序与数据库引擎进行交互,以保存交易历史记录并跟踪每个用

Vincent Vincent 发布于 2024-04-07